每日一题:数数组

题目

构造一个长度为 $n$ 的序列,每个数字大小必须满足 $l <= a[i] <= r$,且和被 3 整除,问有多少种方法?

Solution

$dp[i][j]$ 表示长度为 $i$,余数为 $j$ 的构造数量。$a,b,c$ 表示区间内余数为 $0,1,2$ 的数的数量。

转移方程:

$dp[i][0] = a dp[i - 1][0] + b dp[i - 1][2] + c dp[i - 1][1]$;
$dp[i][1] = (a
dp[i - 1][1] + b dp[i - 1][0] + c dp[i - 1][2]$;
$dp[i][2] = (a dp[i - 1][2] + b dp[i - 1][1] + c * dp[i - 1][0]$;

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include <bits/stdc++.h>
#define ll long long
using namespace std;

ll n, l, r, dp[200005][3], a, b, c;
const ll mod = 1e9 + 7;

int main() {
cin >> n >> l >> r;
while (l % 3 != 0) {
int x = l % 3;
if (x == 1)
b++;
else if (x == 2)
c++;
l++;
}
while (r % 3 != 0) {
int x = r % 3;
if (x == 2)
c++;
else if (x == 1)
b++;
r--;
}
int p = (r - l) / 3;
a += p;
b += p;
c += p;
a++;
dp[0][0] = 1;
for (int i = 1; i <= n; i++) {
dp[i][0] = (a * dp[i - 1][0] + b * dp[i - 1][2] + c * dp[i - 1][1]) % mod;
dp[i][1] = (a * dp[i - 1][1] + b * dp[i - 1][0] + c * dp[i - 1][2]) % mod;
dp[i][2] = (a * dp[i - 1][2] + b * dp[i - 1][1] + c * dp[i - 1][0]) % mod;
}
cout << dp[n][0] << endl;
return 0;
}
作者

Benboby

发布于

2020-08-23

更新于

2021-01-28

许可协议

Your browser is out-of-date!

Update your browser to view this website correctly.&npsb;Update my browser now

×