每日一题:比赛

题意

一共12道题,你有 $a_i$ 的概率做对第 $i$ 题,有 $b_i$ 的概率抄到左边的,有 $c_i$ 的概率抄到右边的,问做对 $0-12$ 题的概率是多少。

solution

做对的概率不太好求,可以反过来求做错的概率,即 $(1-a[i])\times(1-b[i])\times(1-c[i])$,然后 $dp[i][j]$ 表示前 $i$ 道题做对 $j$ 道的概率,设 $dp[0][0] =1$,得到状态转移方程:$dp[i][j]=dp[i-1][j-1]\times(ac=(1-wa))+dp[i-1][j]*wa$ 。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#include <bits/stdc++.h>
using namespace std;
double a[15], b[15], c[15], dp[15][15];
int main() {
for (int i = 1; i <= 12; i++) cin >> a[i];
for (int i = 1; i <= 12; i++) cin >> b[i];
for (int i = 1; i <= 12; i++) cin >> c[i];
dp[0][0] = 1;
for (int i = 1; i <= 12; i++) {
dp[i][0] = dp[i - 1][0] * (1 - a[i]) * (1 - b[i]) * (1 - c[i]);
for (int j = 1; j <= i; j++) {
double wa = (1 - a[i]) * (1 - b[i]) * (1 - c[i]);
dp[i][j] = dp[i - 1][j - 1] * (1 - wa) + dp[i - 1][j] * wa;
}
}
for (int i = 0; i <= 12; i++) printf("%f\n", dp[12][i]);
return 0;
}
作者

Benboby

发布于

2020-05-19

更新于

2021-01-28

许可协议

Your browser is out-of-date!

Update your browser to view this website correctly.&npsb;Update my browser now

×